MAGNETIC POLARITY DETECTOR

Dec 14-10

Chen Cheng, Jeremiah Janssen, Kailey McGuire, Tori Sorensen and Tym Wood

Problem Statement

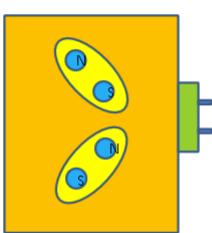
Honeywell has expressed a need for a tool to be used by technicians in their production facility to confirm correct wiring of a magnetic coil early in the fabrication process to prevent errors and potential damage to the equipment that could result from incorrect wiring.

Functional Requirements	Non-Functional Requirements
Less than 10V and 100mA DC	Portable
Bench top set up	Easily customizable
Easy to use and calibrate	Light and easy to handle
Should not be affected by external magnetic fields	Utilize commercially available devices
Will not damage product during testing	

Problem Statement

Example of a Possible Magnetic Core Test Unit

Example Unit with two cores wired to external connector


Example

Coil 1 (L1)

- 4 turns of 24 AWG wire
- Polarity as shown

Coil 2 (L2)

- 100 turns of 36 AWG wire
- Polarity as shown

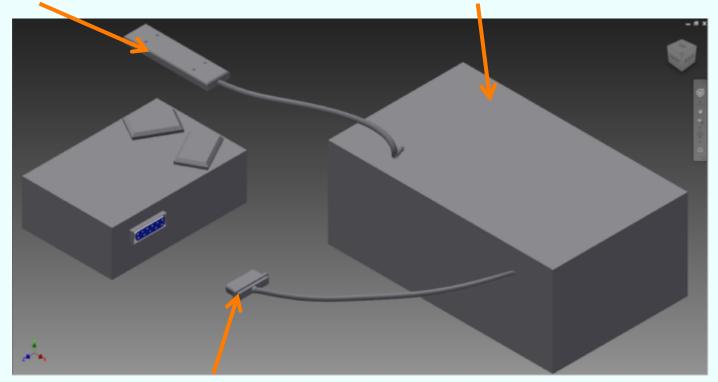
Connector - L1, Pin 1, V1+ - L1, Pin 2, Grnd - L2, Pin 3, V2+ - L2, Pin 2, Grnd

Magnetic Core Body Air Gap Assembly Body Wiring Connector

A specialized tool

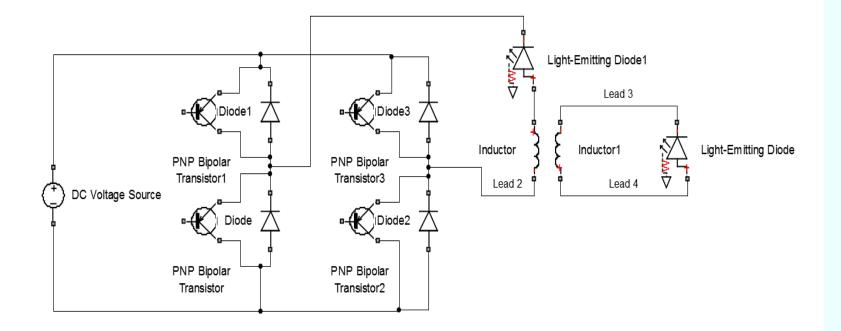
Gauss meter

- Indicates direction
- Reports magnitude
- Measures field in all directions


Our Tool

- Clearly indicates direction
- Reports magnitude
- Indicates correctness with the push of one button
- Fool proof operation

Conceptual Sketch


Wand

Unit (battery and circuitry)

DB9 Connection

Original design

Sensitive Information

- Limits on information that can be released
- Testing units not available to the team
- Solution:

Increased communication with Honeywell and created our own coils for testing

Selection of Senor

- Honeywell had been working with a very sensitive 3-axis chips
- The budget did not allow for the purchase of two of those chips

Solution:

After testing, we were able to confirm that a less sensitive, more cost effective sensor could be used.



Data retrieval from sensors

- Both sensors have the same address
- Need to take readings from both sensors in the same run

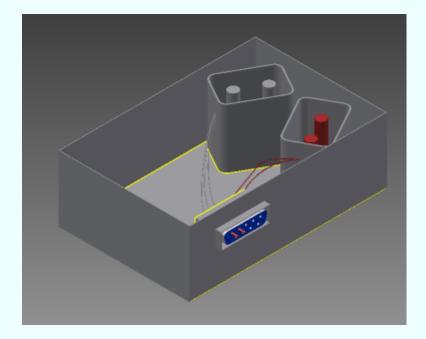
Solution:

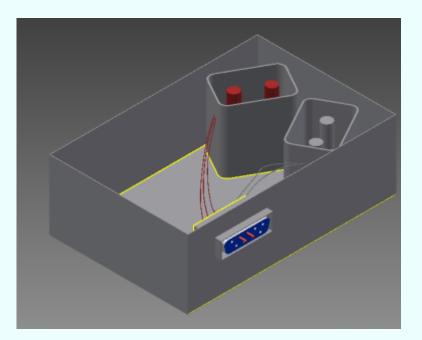
Use two transistors to control the data lines to ensure we are getting readings from the desired coil.

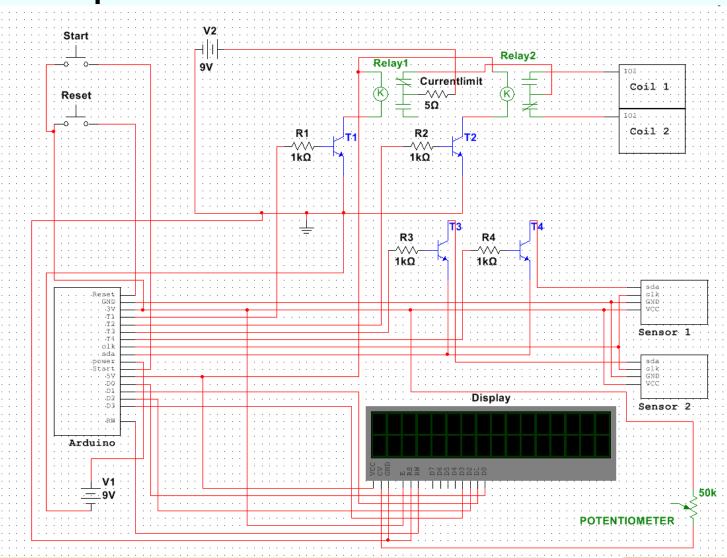
Powering the magnetic field

Magnetic field strength: 10-1100 mG

Current limitation: 100 mA continuous

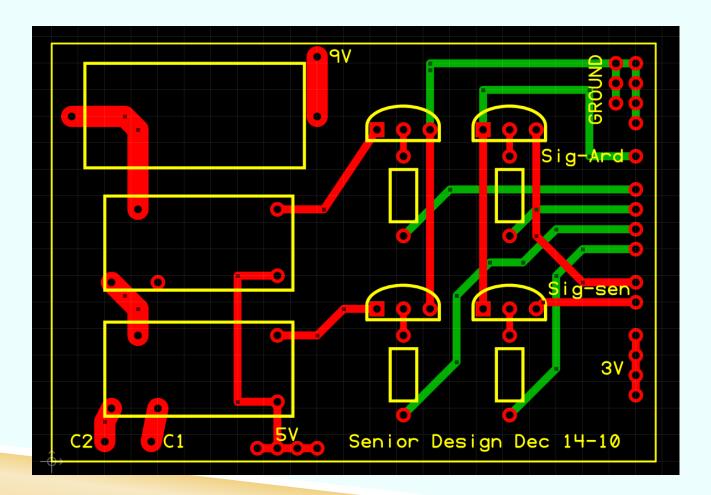

Solution:


Pulse the power supply to the coil in order to supply a larger current without damaging the coils.



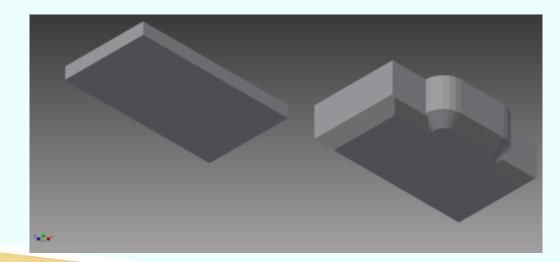
Mock Unit Power Setup

Concept Circuit



Arduino

- Easy to modify
- ► I2C interface
- Room for expansion

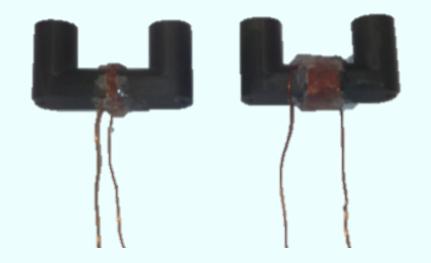

PCB Design

Wand Design

- Indentation matches box
- Sensors are optimally placed within the box to achieve precise readings

*	

Final Design


- 2 magnetic sensors
- Arduino UNO microcontroller
- Printed circuit board
- LCD Screen

Demo

Testing

Initial testing performed with prototype cores

Final testing performed with Honeywell units

Testing

Trial	Mock Unit 1		Mock Unit 2	
1	1058	28	-952	-34
2	1060	25	-947	-29
3	1055	27	-942	-31
4	1056	33	-938	-26
5	1054	27	-942	-31
6	1057	35	-934	-34
7	1054	29	-941	-31
8	1056	33	-938	-23
9	1053	35	-936	-23
10	1053	28	-933	-30

Standard deviation of Coil 1: 2.05 mG Standard deviation of Coil 2: 5.57 mG

Cost Estimate

Arduino UNO	\$23.25	
Potentiometer	\$1.12	
Backlit LCD screen	\$9.99	
DB9 cable	\$4.00	
USB cable	\$4.67	
Push buttons (2)	\$9.90	
Enclosure	\$39.10	
Wand	\$16.09	
Printed circuit board	\$18.05	
Relay (2)	\$3.90	
Power switch	\$0.95	
Battery (2)	\$4.00	
3 axis magnetic sensor (2)	\$13.98	
Transistors (4)	\$1.68	

Our total cost: **\$150.68**

Our total budget: **\$700**


Our project was **\$549.32** under budget

The cost of a similar tool is **\$40,000**

Key Points for Honeywell

- Benefits of pulsing current
 - Allows for higher current use for a short period of time
 - Better testing data
- Capacitor
 - Could eliminate one 9V battery
 - More sophisticated design
- Different sensor
 - Better sensitivity
 - Possible ability to lower pulse power consumption

Questions?

